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MIXED FORMULATIONS OF BENDING PROBLEMS

FOR HOMOGENEOUS ELASTIC PLATES AND BEAMS

UDC 539.3A. D. Matveev

Mixed formulations of bending problems for homogeneous plates (beams) are proposed, whose essence
is that the deformation of a plate (beam) near its fixed boundary is described by the three-dimensional
elasticity equations, and the remaining part by the conventional equations of plate (beam) bending. At
the interface between these regions, the solutions of these equations are joined. The mixed formulation
allows one to describe the three-dimensional stress state in the neighborhood of the fixed boundaries
of plates (beams) and take into account the complex nature of the fixing conditions. Finite-element
implementation is more efficient for the mixed formulations of plate (beam) bending problems than
for the well-known three-dimensional formulations.

Key words: homogeneous plates and beams, three-dimensional elastic problem, Kirchhoff and
Reissner theories.

Introduction. It is well known [1–5] that plate and beam bending problems are commonly formulated using
hypotheses that impose certain restrictions on the displacement, strain, and stress fields and introduce unremovable
errors into the solutions. Moreover, the existing theories of plate (beam) bending ignore the complex nature of their
fixing conditions, for example, in the case of a plate (beam) with a partly clamped edge. Drawbacks and advantages
of various formulations of plate bending problems are discussed in [3–7]. Three-dimensional discrete basic models
of plates (beams) that take into account any fixing conditions and provide for specified solution accuracy have large
dimensions.

In the present paper, we consider mixed formulations of bending problems for elastic homogeneous plates and
beams [8], whose essence is as follows. A plate (beam) is treated as a three-dimensional body in the neighborhood of
its fixed boundary, and the deformation in this region is described using the three-dimensional elasticity equations.
The deformation of the remaining part of the plate (beam) is described by the equations of a Reissner plate [5] (a
Kirchhoff beam). At the interface between these regions, the solutions of the two problems are joined.

The mixed formulations of bending problems have the following advantages. First, they describe the three-
dimensional stress state in the neighborhood of the fixed boundaries of plates (beams), which allows one to take
into account the complex nature of the fixing conditions. Second, varying certain geometric parameters that appear
in mixed formulations, one can construct a mixed discrete model of a plate (beam) in which the stresses in the
neighborhood of the fixed boundary differ from those in the basic model by a specified small quantity. Third,
finite-element implementation [9, 10] for the mixed discrete models of plates (beams) requires less computer time
and memory than that for the basic models.

1. Mixed Formulations of Plate and Beam Bending Problems. 1.1. We consider an isotropic
homogeneous linear-elastic plate of constant thickness which occupies a region V in Cartesian coordinates xyz.
The middle plane of the plate coincides with the xOy plane. The plate is loaded by surface forces qz and is fixed
on the boundary Sr. We denote the neighborhood of the boundary Sr by Vr. The region Vr can be treated as
a set of spheres of radius Rr > Cr, whose centers are points of the boundary Sr. Calculations show that it is
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expedient to use the values of Cr > 3h0 (h0 is the plate thickness). The shape of the region Vr is chosen so as
to make calculations convenient. We introduce the following notation: ur, vr, and wr and u0, v0, and w0 are the
displacement functions of the plate in the regions Vr and V0, respectively, and SH is the interface between the
regions Vr and V0 (V0 = V − Vr). For simplicity, we consider the mixed formulation of the problem for a a × b

rectangular plate (i.e., V = a× b×h0) which is partly clamped for x = 0. In Fig. 1, the clamped part of the plate is
shown by hatching and n1 = 81, n2 = 51, n3 = 11, a = 80h, b = 50h, and h0 = 10h. In this case, the boundary SH

is the intersection of the plate and the plane x = H. If the plate V is in equilibrium, the following conditions hold
on the boundary SH for x = H:

ur = u0, vr = v0, wr = w0; (1)

σr
x = σ0

x, τ r
xy = τ0

xy; (2)

τ r
xz = τ0

xz. (3)

Here σr
x, τ r

xz, and τ r
xy and σ0

x, τ0
xz, and τ0

xy are the stresses acting on the boundary SH in the regions Vr and V0,
respectively.

For the region Vr, we formulate the following three-dimensional elastic problem:

A(ur) = p in Vr; (4)

B(ur) = qr on Sr
q , ur = vr = wr = 0 on Sr. (5)

Here A is the equilibrium-equation operator, B is the operator of the static boundary conditions, ur = {ur, vr, wr}t,
p = {0, 0, 0}t is the body force vector in the region Vr, qr = {0, 0, qz}t is the surface load vector in the region Vr,
Sr

q is the boundary of the region Vr on which the loads are specified, and Sr = SH + Sr + Sr
q is the boundary of

the region Vr. The conditions on the boundary SH are given below.
1.2. We consider the region V0 as a thin plate S0 (in Fig. 1, the boundary of the middle surface of the plate S0

is shown by a thick line). In the region V0m, the plate bending problem using Reissner’s theory is formulated as
follows:

∆∆ϕ = q0z/D, ∆ψ − k2ψ = 0; (6)

y = 0, b: My = Mxy = Qy = 0, x = a: Mx = Mxy = Qx = 0. (7)

Here ϕ(x, y) and ψ(x, y) are unknown functions, D = Eh3
0/(12(1− ν2)), E is Young’s modulus, ν is Poisson’s ratio,

q0z = qz(x, y, h0/2) is the surface load, ∆ is the Laplace operator, k2 = 2C/[D(1 − ν)], C = Gh0, G is the shear
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modulus, Mx and My are the bending moments, Mxy is the twisting moment, and Qx and Qy are the transverse
shear forces expressed in terms of ϕ and ψ.

The angles θx(x, y) and θy(x, y) of rotation of the normal to the middle plane of the plate S0 and the plate
deflection w0(x, y) are written in terms of ϕ and ψ:

θx = −∂ϕ
∂x

+
∂ψ

∂y
, θy = −∂ϕ

∂y
− ∂ψ

∂x
, w0 = ϕ− D

C
∆ϕ. (8)

According to Reissner’s theory, the displacements u0, v0, and w0 in the entire region V0 and on the boundary SH

are approximated by the relations [2]

u0 = zθx(x, y), v0 = zθy(x, y), w0 = w0(x, y) ∀x, y, z ∈ SH . (9)

Inserting (9) into (1), we obtain

ur = zθx(x, y), vr = zθy(x, y), wr = w0(x, y) ∀x, y, z ∈ SH . (10)

It should be noted that conditions (10) satisfied on the boundary SH do not imply that the functions ur, vr, and
wr satisfy conditions (10) in the entire region Vr. By virtue of (10), on the boundary SH for x = H, the functions
ur, vr, and wr are written as

ur = z
2ur(H, y, h0/2)

h0
, vr = z

2vr(H, y, h0/2)
h0

, wr = wr(H, y, 0) ∀y, z ∈ SH . (11)

Substitution of (11) into (10) yields

ur(H, y, h0/2) =
h0

2
θx(H, y), vr(H, y, h0/2) =

h0

2
θy(H, y),

wr(H, y, 0) = w0(H, y) ∀y ∈ SH .
(12)

Relations (8) and (12) can be combined to give

ur
(
H, y,

h0

2

)
=
h0

2

(
− ∂ϕ

∂x
+
∂ψ

∂y

)∣∣∣
x,y∈SH

, vr
(
H, y,

h0

2

)
=
h0

2

(
− ∂ϕ

∂y
− ∂ψ

∂x

)∣∣∣
x,y∈SH

,

wr(H, y, 0) = ϕ(x, y)− (D/C)∆ϕ
∣∣∣
x,y∈SH

∀y ∈ SH . (13)

In this case, for x = H, conditions (2) and (3) become

Mr
x = M0

x , Mr
xy = M0

xy; (14)

Qr
x = Q0

x. (15)

Here M0
x , M0

xy, and Q0
x are the bending moment, twisting moment, and transverse shear force of Reissner’s plate S0,

respectively, expressed in terms of the functions ψ and ϕ [5] and Mr
x , Mr

xy, and Qr
x are expressed in terms of ur,

vr, and wr and are calculated by the formulas

Mr
x =

h0/2∫
−h0/2

z σr
x dz, Mr

xy =

h0/2∫
−h0/2

z τ r
xy dz, Qr

x =

h0/2∫
−h0/2

τ r
xz dz.

Indeed, it follows from (9) and (10) that the displacement functions ur, vr, wr, u0, v0, and w0 on the boundary SH

in the regions Vr and V0, respectively, correspond to the displacement approximations in Reissner’s theory [2, 5].
Consequently, the stresses σr

x, τ r
xz, τ

r
xy, σ0

x, τ0
xz, and τ0

xy on the boundary SH are calculated in accordance with this
theory as follows:

σr
x = z

12
h3

0

Mr
x , τ r

xy = z
12
h3

0

Mr
xy, σ0

x = z
12
h3

0

M0
x , τ0

xy = z
12
h3

0

M0
xy. (16)

Taking into account (16), we infer that conditions (14) are equivalent to conditions (2). Condition (15) is obtained
by integrating equality (3) with respect to z. Thus, condition (3) holds in the integral sense: according to Reissner’s
theory, the boundary conditions for the shear stresses τxz are expressed only in terms of the transverse shear forces.
We note that conditions (3) and (15) are statically equivalent [5].
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It is shown that the mixed formulation of the plate bending problem reduces to Eqs. (4) and (6) subject to
boundary conditions (5) and (7), conditions for displacements (11), and the joining conditions for the solutions ur,
vr, wr, ψ, and ϕ on the boundary SH , i.e., conditions (13)–(15).

1.3. We consider an isotropic homogeneous linear-elastic beam which occupies a region V in Cartesian
coordinates xyz. The beam axis coincides with the Ox axis, and the planes xOy and xOz are the horizontal
and vertical planes of geometrical symmetry of the beam, respectively. The beam is loaded by forces qz such that
qz(x, y, z) = qz(x,−y, z); i.e., the beam is bent in the vertical plane zOx. We consider the mixed formulation of the
beam bending problem for a prismatic beam V = L× b× h0 (Fig. 2). On the boundary Sr, the following complex
constraints are imposed: for x = 0, the beam is partly clamped at its end and on the horizontal support. In Fig. 2,
the fixed part of the beam is shown by hatching, n1 = 145, n2 = 13, n3 = 19, L = 144h, b = 12h, h0 = 18h, and
z0 = 4h. We denote the neighborhood of the boundary Sr by Vr. Using a similar line of reasoning as in Sec. 1.1, we
require that equalities (1)–(3) should hold in the regions Vr and V0 (V0 = V − Vr). For the region Vr, we obtain a
three-dimensional elastic problem in the form of (4), (5). The regions Vr and V0 are separated by the plane x = H.
Calculations show that it is expedient to use values of Cr > 2.5h0 (h0 is the characteristic dimension of the beam
cross section) and supplement Eqs. (4) and (5) for the displacements vr and wr in the region Vr by the conditions

vr(x, y, z) = 0, wr(x, y, z) = wr(x, 0, 0) ∀y, z ∈ Vr, x1 6 x 6 H, (17)

where H > 2.5h0 + z0 and x1 > H − 0.5h0.
We consider the region V0 as a Kirchhoff beam L0 (in Fig. 2, the axis of the beam L0 is shown by a thick

line). In this region, we formulate the beam bending problem [11]

∂4w0(x)
∂x4

=
q0z(x)
EIy

; (18)

x = L: M = Q = 0, (19)

where w0(x) is the beam deflection, Iy is the cross-sectional moment of inertia about the Oy axis, q0z(x)

=
∫
qz(x, y, h0/2) dy is the load, M is the bending moment, and Q is the transverse shear force.

The displacements of the three-dimensional beam L0 are given by

u0(x, y, z) = −z ∂w0

∂x
, v0(x, y, z) = 0, w0(x, y, z) = w0(x). (20)

We note that, for the beam L0, the common boundary SH of the regions Vr and V0 degenerates into the point
x = H. Substituting relations (20) for x = H into (1), we obtain the displacements on SH :

ur = −z ∂w0(x)
∂x

∣∣∣
x=H

, vr
∣∣∣
x=H

= 0, wr = w0(H). (21)
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It should be noted that the condition vr
∣∣∣
x=H

= 0 is satisfied by virtue of (17). Since ur is independent of y, we
impose the following constraint on the displacement ur:

ur(H, y, z) = ur(H, 0, z) ∀y, z ∈ SH . (22)

Using (21) and (22), we write the functions ur and wr on SH as

ur = 2zur(H, 0, h0/2)/h0, wr = wr(H, 0, 0) ∀y, z ∈ SH . (23)

From (23) and (21) it follows that

ur(H, 0, h0/2) = −h0

2
∂w0

∂x

∣∣∣
x=H

, wr(H, 0, 0) = w0(H) for x = H. (24)

Using (17), (22), and (23), as in Sec. 1.2, we replace conditions (2) and (3) by

Mr
x = M0

x , Qr
x = Q0

x, τ r
xy = 0 for x = H. (25)

Here M0
x and Q0

x are the bending moment and transverse shear force of the beam L0, respectively, which depend
on its deflection w0 [11] and Mr

x , Qr
x, and τ r

xy are functions of the displacements ur, vr, and wr of the region Vr

which, for x = H, are given by

Mr
x =

∫
S

z σr
x dS, Qr

x =
∫
S

τ r
xz dS

(S is the cross section of the beam).
It is shown that the mixed formulation of the beam bending problem (see Fig. 2) reduces to Eqs. (4) and

(18) subject to boundary conditions (5) and (19), the conditions for the displacements (17), (22), and (23), and
the conditions (24) and (25) of joining of the solutions ur, vr, wr, and w0 on the boundary SH . We note that the
condition vr

∣∣∣
x=H

= 0 is satisfied by virtue of (17).
The mixed formulations of the problems contain differential operators of the three-dimensional elastic prob-

lem and the plate or beam bending problem, which are known to be positive definite. Therefore, to solve the plate
(beam) bending problems, one can use the finite-element method (FEM) (in the form of the Ritz method). In this
case, it suffices to impose only kinematic boundary conditions; satisfaction of the conditions for the displacements
[conditions (11) and (12) for plates and (17) and (22)–(24) for beams] presents no difficulties for discrete mixed
models of plates (beams).

Remark 1. The mixed formulations of the bending problems contain geometrical parameters, i.e., the
dimensions of the region Vr (in this case, H) which allow one to control the error of the solutions (see Sec. 2.1).

Remark 2. It is known [5] that Reissner’s and Kirchhoff’s theories give close results in describing the bending
of thin plates at a distance from the fixed boundary (see Fig. 1, x > H). Therefore, to simplify the calculations for
the discrete model of the plate S0, we use Clough’s finite element with the following nodal parameters [9]: w0, θx,
and θy (θx = ∂w0/∂x, θy = ∂w0/∂y, and w0 is the plate deflection).

We point out some special features of Clough’s finite elements (FEs). On the one hand, the approximating
functions and the expression for the potential energy of the Clough’s finite element are constructed using Kirchhoff’s
theory [9, 10]. On the other hand, the governing equations for this FE are obtained by varying the independent
nodal parameters θx, θy, and w0. Consequently, at the nodes of the Clough’s FE, the statement of Reissner’s theory
holds that states that the functions θx and θy are independent of the deflection function w0 [2]. To construct the
global system of FEM equations, we require that the statement of Reissner’s theory be satisfied at all nodes of
the discrete model of the plate. Thus, the Clough’s FE and the corresponding discrete model of the plate are
constructed using the relations of Kirchhoff’s and Reissner’s plate bending theories. We note that Clough’s finite
elements allow one to satisfy conditions (12) in discrete form.

Remark 3. To construct a discrete model of the beam L0, one should use the Hermitian finite element of
the third order [10] with nodal parameters w0 and dw0/dx (w0 is the beam deflection), which allow one to satisfy
conditions (24) in discrete form.

2. Results of Numerical Experiments. 2.1. We consider an isotropic linear-elastic plate which occupies
a region V = 80h×50h×10h in the coordinate system xyz (see Fig. 1). On the boundary Sr: {x = 0, 0 6 y 6 50h,
−3h 6 z 6 3h}, the conditions u = v = w = 0 are specified, i.e., the plate is partly clamped at x = 0. The
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TABLE 1

i w0
wh

H = 30h H = 10h

11 3.456 34.532 35.589
21 106.933 107.225 116.344
31 208.807 211.083 225.604
41 332.318 337.959 356.186
51 470.066 479.006 500.962
61 614.304 627.025 652.748
71 758.523 776.164 805.678
81 900.366 923.976 957.289

TABLE 2

x
z = −0.5h z = −2.5h z = −3.5h z = −4.5h

σ0 σh σ0 σh σ0
σh

σ0 σh
H = 30h H = 10h

0.5h 2.4673 2.4752 12.6614 12.6810 14.3000 14.3191 14.2407 1.2533 1.2549
2.5h 3.4659 3.4756 8.5684 8.5828 9.1465 9.1612 9.1099 7.0381 7.0499
4.5h 1.7131 1.7187 5.6871 5.6981 6.9251 6.9387 6.8854 8.0713 8.0878
6.5h 1.0908 1.0948 4.6617 4.6730 6.3581 6.3735 6.0640 8.2004 8.2203
8.5h 1.0488 1.0535 4.3828 4.3960 6.1437 6.1619 4.4740 8.0058 8.0294

three-dimensional (basic) model of the plate consists of first-order finite elements V h
e shaped like a cube with side

h and generates a 81× 51× 11 grid, whose nodes are considered in the integer coordinate system ijk. The mixed
(discrete) model of the plate is constructed for H = 30h (i.e., H = 3h0, where h0 is the plate thickness). The
region Vr is discretized into finite elements V h

e . The region V0 is treated as a thin plate S0 (in Fig. 1, the boundary
of its middle plane is shown by a thick line). The plate S0 is partitioned into square Clough’s finite elements [9]
with side h and generates a square grid S0

h, whose nodes have coordinates (i, j, 6) (i = 31, . . . , 81 and j = 1, . . . , 51).
Loads qz = 0.0324 are applied to the nodes (i, j, 6) of the grid S0

h (i = 55, 60, 65, 70, 75; j = 30, 35, 40, 45). The
Young’s modulus of the plate is E = 1, and the Poisson’s ratio is ν = 0.3, and h = 0.5. The calculations were
performed for H = h0 and H = 3h0. For H = 3h0, the displacements wh (plate deflection) of the mixed model
differ from the deflections w0 of the basic model by not more than 2.5%. The values of w0 and wh (j = 51 and
k = 6) are given in Table 1. Table 2 summarizes the equivalent stresses σh (for the mixed model) and σ0 (for the
basic model) calculated at the centroids of the finite elements of V h

e (y = 49.5h, H = 10h, and H = 30h) according
to the fourth strength theory. The maximum value of the stress σh differs from σ0 by 0.06%. For H = h0, the
maximum value of wh differs from w0 by 6.3% and the maximum value of σh differs from σ0 by 0.4%; i.e., the error
of the solution decreases as H increases.

The basic model of the plate has 135,252 nodal unknowns, and the band width of the system of FEM
equations is equal to 1722. The mixed model (for H = 3h0) has 57,630 unknowns, and the band width is equal to
1749 and requires 2.3 times less computer memory compared to that of the basic model. The computation time for
the mixed discrete plate model is a factor of 2.5 smaller than that for the basic model.

2.2. We consider an isotropic homogeneous linear-elastic beam which occupies a region V = 144h×12h×18h
in the coordinate system xyz (see Fig. 2). The conditions u = v = w = 0 are specified on the boundary Sr: {x = 0,
−6h 6 y 6 6h, 0 6 z 6 9h} ∪ {0 6 x 6 4h, −6h 6 y 6 6h, z = −h0/2}; i.e., the beam is clamped on the horizontal
support and is partly clamped at the end. The three-dimensional discrete (basic) model of the beam consists of
finite elements V h

e (see Sec. 2.1) and generates a 145 × 13 × 19 grid, whose nodes are considered in the integer
coordinate system ijk. The mixed (discrete) model of the beam is constructed for H = 49h (H = 2.5h0 + 4h),
x1 = 36h (x1 = 2h0), and Cr = 2.5h0. The region Vr is discretized into finite elements V h

e . We consider the
region V0 as the beam L0 (in Fig. 2, the axis of the beam L0 is shown by a thick line). The beam L0 is modeled
by third-order Hermitian finite elements [10] of length h. In the coordinate system ijk, the nodes of this grid have
coordinates (i, 7, 10) (i = 50, 51, . . . , 145). The forces qz = 0.0324 are applied to the nodes with coordinates (i, 7, 10)
[i = 49+12(k−1); k = 1, . . . , 7]. The Young’s modulus of the beam is E = 1, and the Poisson’s ratio is ν = 0.3, and
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TABLE 3

i w0 wh i w0 wh

13 2.053 2.051 109 102.772 105.585
37 16.898 16.909 133 134.449 139.009
61 41.581 41.932 145 150.373 155.729
85 71.172 72.649

TABLE 4

x
z = 8.5h z = 6.5h z = −1.5h z = −6.5h z = −8.5h

σ0 σh σ0 σh σ0 σh σ0 σh σ0 σh

0.5h 2.1425 2.1713 1.4028 1.4253 1.2698 1.2331 0.6316 0.6251 1.8986 1.8636
2.5h 1.9560 1.9778 1.4809 1.5035 0.6754 0.6509 0.7513 0.7364 3.4151 3.3622
4.5h 1.9402 1.9610 1.4779 1.5006 0.3619 0.3481 1.1586 1.1394 3.3805 3.3363
6.5h 1.9532 1.9744 1.4782 1.5008 0.1418 0.1397 1.4765 1.4548 2.3911 2.3626
9.5h 1.9458 1.9675 1.4765 1.4989 0.1570 0.1577 1.5207 1.4986 2.0392 2.0161

15.5h 1.8358 1.8578 1.4021 1.4243 0.2514 0.2435 1.4087 1.3865 1.8241 1.8022

h = 0.111. The maximum value of the deflection wh of the mixed model differs from the deflections w0 of the basic
model of the beam by 3.2%. Table 3 presents the values of the deflections w0 and wh (j = 7 and k = 10). Table 4
(y = −5.5h) compares the equivalent stresses σh (for the mixed model) and σ0 (for the basic model) calculated at
the centroids of the finite elements V h

e according to the fourth strength theory. In the neighborhood of the clamped
part of the beam, the stresses σh differ from σ0 by not more than 1.5%.

The basic model of the beam contains 106,899 unknowns, and the band width of the FE system of equations
is equal to 786. The mixed model of the beam has 28,679 unknowns, and the band width equal to 866 occupies 3.4
times less computer memory compared to that of the basic model. The computation time for the mixed discrete
model of the beam is four times smaller than that for the basic model.

REFERENCES

1. V. I. Samul’, Fundamentals of the Theory of Elasticity and Plasticity [in Russian], Vysshaya Shkola, Moscow
(1970).

2. V. V. Vasil’ev, “Classical theory of plates — history and state-of-the-art,” Izv. Ross. Akad. Nauk, Mekh. Tverd.
Tela, No. 3, 46–58 (1998).

3. A. L. Gol’denveizer, “Approximate methods for calculating thin elastic shells and plates,” Izv. Ross. Akad.
Nauk, Mekh. Tverd. Tela, No. 3, 134–149 (1997).

4. V. V. Vasil’ev, “Discussion of classical plate theory,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 4, 140–150
(1995).

5. V. V. Vasil’ev, “On thin-plate theory,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 26–47 (1992).
6. P. A. Zhilin, “Poisson’s and Kirchhoff’s plate theories form the viewpoint of modern plate theory,” Izv. Ross.

Akad. Nauk, Mekh. Tverd. Tela, No. 3, 134–150 (1992).
7. N. A. Alfutov, “Some paradoxes of elastic thin plate theory,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela,

No. 3, 65–72 (1992).
8. A. D. Matveev, “New three-dimensional formulations of applied problems of elasticity,” Krasnoyarsk (2001).

Deposited at VINITI 09.28.01, No. 2060-B2001.
9. P. M. Varvak, I. M. Buzun, A. S. Gorodetskii, et al., Finite Element Method [in Russian], Vishcha Shkola, Kiev

(1981).
10. V. A. Postnov, Numerical Methods of Ship Structural Analysis [in Russian], Sudostroenie, Leningrad (1977).
11. N. M. Belyaev, Strength of Materials [in Russian], Nauka, Moscow (1976).

597


